

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

pgasus

The REST interface to PostgreSQL

This software is of beta quality at the moment. Expect production quality by end of 2015.

Introduction

pgasus offers RESTful interface for PostgreSQL.

Design rules:

	One URL per resource.

	Public information can be cached by server in front of pgasus to lower load on the database server.

	Supports thousands of client HTTP(S) connections.

	Use of connection pool to PostgreSQL to keep parsed functions and plans in sessions.

	Graceful shutdown waiting for requests to complete.

	Strict restrictions on HTTP requests/responses size, and timeout on database requests: pgasus lives in the wild!

	Offers access to relations (table, views) and procedures.

Routes

A table stored in the database stores all routes made available by pgasus. The reason to store this in the database is to be able to synchronize deployment of new tables and functions, while updating routes in a single transaction. Here are the columns:

	route_id (integer): primary key

	method (http_method): get, post, put, delete

	url_path (text): like /enterprises/:entref/pos, containing variables. See denco [https://github.com/naoina/denco] for format.

	object_name (text): name of relation or procedure

	object_type (object_type): relation, procedure

	ttl (integer): used for cache-control in HTTP response (in seconds)

	is_public (boolean): used for cache-control in HTTP response

	hidden_fields (text[]): fields hidden from result sets

	readonly_fields (text[]): fields that can be returned but not saved via inserts/updates

	constants (jsonb): constant values set in middleware’s context

	context_mapped_headers (hstore): HTTP header values set in middleware’s context

	context_mapped_variables (text[]): parameters of route to copy as variables in context, excluding query string

	context_mapped_cookies (jsonb): context variable imported from HTTP requests and exported as cookies in responses

	max_limit (integer): maximum number of records that can be requested when using a select statement

Column context_mapped_cookies can be set to NULL or must be a json array consisting of objects made of the following fields:

	name (string): name of the cookie as seen by the browser

	contextVariable (string): name of variable in the middleware’s context, same as “name” if contextVariable is left empty

	maxAge (number): lifetime of the cookie in seconds (set to 0 to disable)

	subDomain (string): if non-null, sub-domain prepended to the domain name (the domain is set in the configuration file)

	path (string): if non-null, path where cookie is applicable

	secure (bool): true if this cookie is transmitted only over SSL/TLS, false otherwise

	httpOnly (bool): true if this cookie is hidden from JavaScript, false otherwise

	read (bool): true if this cookie is read from HTTP requests, false otherwise

	write (bool): true if this cookie is returned in HTTP responses, false otherwise

When the routes table is updated, a trigger sends a notification to pgasus which reload routes automatically. If you change columns of a relation, or arguments of a procedure, you may want to reload routes as well.

Relations

Four HTTP methods are available:

	GET: select, supports filters as “where” clause, and ordering as “order by” clause

	POST: insert

	PUT: update, supports filters as “where” clause

	DELETE: delete, supports filters as “where” clause

Definition of columns loaded from database for automatic conversion.

Use views when SQL joins are required or to transform output.

Response from pgasus depends on HTTP method:

	GET: result set as an array

	POST: all fields of new record, including auto-increments

	PUT: number of affected records

	DELETE: number of affected records

Procedures

Four HTTP methods are supported for procedures:

	GET if database state is not modified, procedure must be immutable or stable.

	POST if database state will be altered.

	PUT if repeating calls will equal parameters results in the same database state.

	DELETE if resource has to be permanently erased.

Supports neither filters nor ordering.

Definition of arguments loaded from database for automatic conversion

Response depends on the result type of procedure:

	Array if procedure returns a result set

	Single value otherwise

Making a request

Composing requests for relations (tables and views)

The following values are used to compose the where clause of the generated SQL query:

	URL route constants, those are also used as equality operators.

	URL route variables, those are used as equality operators. Overrides constants.

	URL query string, accordingly to the format specified by queryme [https://github.com/debackerl/queryme]

For inserts and updates, the new values of columns must be specified in the HTTP body. See section below.

URL must satisfy the following format:

/ROUTE.FORMAT?f=FILTER&s=SORT&l=LIMIT

	ROUTE is a path matching one of the URL route.

	FORMAT is the requested format for result.

	FILTER (optional) is the condition used for the where condition in the resulting SQL query, see queryme [https://github.com/debackerl/queryme].

	SORT (optional) is the sorting order to be used in the SQL query, see queryme [https://github.com/debackerl/queryme].

	LIMIT (optional) is the maximum number of records to read from the database.

A simple URL may look like this:

/customers.json?f=eq(city,456)&s=street,!streetnr&l=10

/customers identifies the resource being accessed.

	.json is the output format.

	eq(city,456) keeps customers living in city 456.

	street,!streetnr sorts by street name first, then by decreasing street number.

	10 limits the result to 10 records.

Composing requests to procedures

When calling a procedure, the order of parameter is not important. Also, optional parameters remains optional.

Values loaded for each parameter are loaded in the following order:

	URL route constants.

	URL route variables. Overrides constants.

	URL query string for GET and DELETE methods. Keys found in query string are argument names, and values are formatted in JSON.

	HTTP body for POST and PUT methods. See section below.

URL must satisfy the following format:

/ROUTE.FORMAT?param1=VALUE¶m2=VALUE&...

Values specified in the query string of a request to a procedure must be encoded in JSON using URL-encoding for special characters.

A simple URL may look like this:

/tickets/create.json?kind="incident"&level=10&title="fire!"

Response formats

Three build-in data formats can be used to generate the content of the HTTP response:

	json is the only format able to serialize any kind of result from the database.

	xlsx serializes each record set as a sheet. Arrays and other composite data types in relations (tables and views) won’t be serialized. However, procedures returning composite types or setof values are supported. Procedures returning a bytea value are expected to return a xlsx file.

	csv is UTF-8 encoded, comma separated. Strings are double-quoted. Arrays and other composite data types in relations (tables and views) won’t be serialized. Procedures returning composite types or setof values are supported. Procedures returning a text or varchar value are expected to return a csv file.

	bin is used to return result of a procedure as is. Text is UTF-8 encoded. Only scalar data types are supported.

In addition, the configuration file may define several binary_formats sections. Those are used when format isn’t one of the build-in formats. Each section must define two fields:

	extension is the format as specified in the requested URL.

	mime_type is the corresponding MIME type to be specified in the HTTP response’s header.

Route variable formats

Value specified in route (excluding query string) to relations and procedures must be encoded as following:

Parameter type	Format
————————-	————————————————
boolean	‘t’ or ‘true’ for true; ‘f’ or ‘false’ for false
smallint, integer, bigint	decimal representation
real, double precision	base 10 floating-point representation
timestamp	RFC 3339
bytea	base64-encoded (for URLs)
other	URL-encoded PostgreSQL text literal

JSON is not used in this case to give a more natural look to URLs.

HTTP Body

Not everything fits in a URL. A URL is used to identify and filter only.

The HTTP body is used by client side to send (a large amount of) data. Data can be encoded in JSON (default), or using Postgres literals when the Content-Type of the request is set to application/x-www-form-urlencoded.

HTTP bodies are used in three cases:

	POST and PUT to procedure: fields sent are arguments to be provided to procedure. If URL defines variables of equal names, URL variables have priority.

	POST on relation: fields are values of columns of new record being inserted.

	PUT on relation: fields are values of columns of records being updated.

Context

pgasus uses the notion of context when executing requests on the database. PostgreSQL’s set_config function is used to this end.

All context variables will be put in the same namespace as specified in the configuration file to avoid conflicts with other parameters.

The context is built in the following order:

	Load default context variables set in configuration file.

	Load value of cookies defined in route’s context_mapped_cookies setting where the read field was set to true.

	Load variables defined in route’s context_mapped_variables setting. Looking first in route’s variables if found, otherwise in cookies. Overrides header.

	Map HTTP header values accordingly to route’s context_mapped_headers setting. A special header, X-Accept-Extension, is initialized by pgasus with file extension as specified in requested URL.

Batch mode

POST on procedures and relations supports batch mode.

Batch mode is activated by sending a JSON array.

Each element of the array is a JSON object for procedure execution or record insertion.

CSV output format does not support batch mode as it is not recursive.

Security

A CA certificate can be configured to validate client application certificate for TLS mutual authentication. In this case, client’s common name is used as database user. This mean that accesses to database objects can be restricted on a per application basis.

If HTTP client doesn’t support mutual authentication, basic HTTP authentication can also be used in which case the provided password is matched against encrypted password stored in Postgres. This mode can only be used over a TLS connection to keep credential confidential.

Also, because pgasus has the notion of context, a session id could be passed in the HTTP header, and stored as a PostgreSQL configuration in the database session. That way, you can check session id against a table of active sessions, and verify permissions when accessing data (e.g. using row-level policies in PostgreSQL 9.5+).

Self-defense

pgasus offers restriction on:

	HTTP header size

	HTTP body size

	HTTP response size

	Total connection count

	Excessive reads and writes durations on TCP sockets

	Excessive execution time of SQL requests

Database design tips

	Use triggers to validate changes made to tables when using routes to relations.

	For multi-language web sites, put the language desired in the route. Then load this parameter in the database context using the context_mapped_variables setting of the routes table. Then you can create views on table to localise the data, or use this context variable in your procedure.

	If you use AJAX to connect to pgasus, load the user session id from a cookie by configuring the proper cookie name in the routes table. Then to show only records relevent to a user, create a view where a filter is applied using the session id stored in the database context. It is also possible to use row-level policies to restrict accesses based on the session id with PostgreSQL 9.5+.

Installation

pgasus is a go program. You will need the go compiler to build the project.

On debian, one clean way to install go is to use godeb [https://github.com/niemeyer/godeb].

go will want its own directory to download source code, build, and install binaries. One nonintrusive way is the following, if you are using bash:

mkdir ~/gocode
echo "export GOPATH=~/gocode" >> ~/.bash_profile

It may also be wise to update your $PATH to include “~/gocode/bin/”.

You are now ready to download pgasus:

go get github.com/debackerl/pgasus

and install it:

go install github.com/debackerl/pgasus

You can now type pgasus to start the program.

Configuration

The program must be started with the path to its configuration path like this:

pgasus --config pgasus.conf

Please have a look at the sample pgasus.conf file which is written in TOML [https://github.com/toml-lang/toml] format.

Development

Include a new library:
go get -u github.com/jackc/pgx/v4

This will add a new require statement in go.mod file.

To update the vendor directory:
go mod vendor

To test the container:
docker run --rm --network="host" -e PG_USER=postgres -e PG_PASSWORD=pw -v $(pwd)/pgasus.conf:/etc/pgasus.conf:ro debackerl/pgasus

 [image: ../../../../_images/units.svg]Go Reference [https://pkg.go.dev/github.com/alecthomas/units]

Units - Helpful unit multipliers and functions for Go

The goal of this package is to have functionality similar to the time [http://golang.org/pkg/time/] package.

It allows for code like this:

n, err := ParseBase2Bytes("1KB")
// n == 1024
n = units.Mebibyte * 512

 [image: https://us-bucket-host.s3.amazonaws.com/jason/jason_cropped_4.svg]logo

Jason is an easy-to-use JSON library for Go.

[image: ../../../../_images/jason.svg]Build Status [https://travis-ci.org/antonholmquist/jason] [image: ../../../../_images/godoc-reference-blue.svg]Godoc [https://godoc.org/github.com/antonholmquist/jason] [image: ../../../../_images/license-MIT-red.svg]license [https://raw.githubusercontent.com/antonholmquist/jason/master/LICENSE]

About

Jason is designed to be convenient for reading arbitrary JSON while still honoring the strictness of the language. Inspired by other libraries and improved to work well for common use cases. It currently focuses on reading JSON data rather than creating it. API Documentation [http://godoc.org/github.com/antonholmquist/jason] can be found on godoc.org.

Install

go get github.com/antonholmquist/jason

Import

import (
 "github.com/antonholmquist/jason"
)

Data types

The following golang values are used to represent JSON data types. It is consistent with how encoding/json uses primitive types.

	bool, for JSON booleans

	json.Number/float64/int64, for JSON numbers

	string, for JSON strings

	[]*Value, for JSON arrays

	map[string]*Value, for JSON objects

	nil for JSON null

Examples

Create from bytes

Create object from bytes. Returns an error if the bytes are not valid JSON.

v, err := jason.NewObjectFromBytes(b)

If the root object is not an array, use this method instead. It can then be cased to the expected type with one of the As-Methods.

v, err := jason.NewValueFromBytes(b)

Create from a reader (like a http response)

Create value from a io.reader. Returns an error if the string couldn’t be parsed.

v, err := jason.NewObjectFromReader(res.Body)

Read values

Reading values is easy. If the key path is invalid or type doesn’t match, it will return an error and the default value.

name, err := v.GetString("name")
age, err := v.GetInt64("age")
verified, err := v.GetBoolean("verified")
education, err := v.GetObject("education")
friends, err := v.GetObjectArray("friends")
interests, err := v.GetStringArray("interests")

Read nested values

Reading nested values is easy. If the path is invalid or type doesn’t match, it will return the default value and an error.

name, err := v.GetString("person", "name")
age, err := v.GetInt64("person", "age")
verified, err := v.GetBoolean("person", "verified")
education, err := v.GetObject("person", "education")
friends, err := v.GetObjectArray("person", "friends")

Loop through array

Looping through an array is done with GetValueArray() or GetObjectArray(). It returns an error if the value at that keypath is null (or something else than an array).

friends, err := person.GetObjectArray("friends")
for _, friend := range friends {
 name, err := friend.GetString("name")
 age, err := friend.GetNumber("age")
}

Loop through object

Looping through an object is easy. GetObject() returns an error if the value at that keypath is null (or something else than an object).

person, err := person.GetObject("person")
for key, value := range person.Map() {
 ...
}

Sample App

Example project:

package main

import (
 "github.com/antonholmquist/jason"
 "log"
)

func main() {

 exampleJSON := `{
 "name": "Walter White",
 "age": 51,
 "children": [
 "junior",
 "holly"
],
 "other": {
 "occupation": "chemist",
 "years": 23
 }
 }`

 v, _ := jason.NewObjectFromBytes([]byte(exampleJSON))

 name, _ := v.GetString("name")
 age, _ := v.GetNumber("age")
 occupation, _ := v.GetString("other", "occupation")
 years, _ := v.GetNumber("other", "years")

 log.Println("age:", age)
 log.Println("name:", name)
 log.Println("occupation:", occupation)
 log.Println("years:", years)

 children, _ := v.GetStringArray("children")
 for i, child := range children {
 log.Printf("child %d: %s", i, child)
 }

 others, _ := v.GetObject("other")

 for _, value := range others.Map() {

 s, sErr := value.String()
 n, nErr := value.Number()

 if sErr == nil {
 log.Println("string value: ", s)
 } else if nErr == nil {
 log.Println("number value: ", n)
 }
 }
}

Documentation

Documentation can be found a godoc:

https://godoc.org/github.com/antonholmquist/jason

Test

To run the project tests:

go test

Compatibility

Go 1.1 and up.

Where does the name come from?

I remebered it from an email one of our projects managers sent a couple of years ago.

“Don’t worry. We can handle both XML and Jason”

Author

Anton Holmquist, http://twitter.com/antonholmquist

httpsnoop

Package httpsnoop provides an easy way to capture http related metrics (i.e.
response time, bytes written, and http status code) from your application’s
http.Handlers.

Doing this requires non-trivial wrapping of the http.ResponseWriter interface,
which is also exposed for users interested in a more low-level API.

[image: ../../../../_images/httpsnoop.svg]GoDoc [https://godoc.org/github.com/felixge/httpsnoop]
[image: ../../../../_images/httpsnoop1.svg]Build Status [https://travis-ci.org/felixge/httpsnoop]

Usage Example

// myH is your app's http handler, perhaps a http.ServeMux or similar.
var myH http.Handler
// wrappedH wraps myH in order to log every request.
wrappedH := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
	m := httpsnoop.CaptureMetrics(myH, w, r)
	log.Printf(
		"%s %s (code=%d dt=%s written=%d)",
		r.Method,
		r.URL,
		m.Code,
		m.Duration,
		m.Written,
)
})
http.ListenAndServe(":8080", wrappedH)

Why this package exists

Instrumenting an application’s http.Handler is surprisingly difficult.

However if you google for e.g. “capture ResponseWriter status code” you’ll find
lots of advise and code examples that suggest it to be a fairly trivial
undertaking. Unfortunately everything I’ve seen so far has a high chance of
breaking your application.

The main problem is that a http.ResponseWriter often implements additional
interfaces such as http.Flusher, http.CloseNotifier, http.Hijacker, http.Pusher, and
io.ReaderFrom. So the naive approach of just wrapping http.ResponseWriter
in your own struct that also implements the http.ResponseWriter interface
will hide the additional interfaces mentioned above. This has a high change of
introducing subtle bugs into any non-trivial application.

Another approach I’ve seen people take is to return a struct that implements
all of the interfaces above. However, that’s also problematic, because it’s
difficult to fake some of these interfaces behaviors when the underlying
http.ResponseWriter doesn’t have an implementation. It’s also dangerous,
because an application may choose to operate differently, merely because it
detects the presence of these additional interfaces.

This package solves this problem by checking which additional interfaces a
http.ResponseWriter implements, returning a wrapped version implementing the
exact same set of interfaces.

Additionally this package properly handles edge cases such as WriteHeader not
being called, or called more than once, as well as concurrent calls to
http.ResponseWriter methods, and even calls happening after the wrapped
ServeHTTP has already returned.

Unfortunately this package is not perfect either. It’s possible that it is
still missing some interfaces provided by the go core (let me know if you find
one), and it won’t work for applications adding their own interfaces into the
mix. You can however use httpsnoop.Unwrap(w) to access the underlying
http.ResponseWriter and type-assert the result to its other interfaces.

However, hopefully the explanation above has sufficiently scared you of rolling
your own solution to this problem. httpsnoop may still break your application,
but at least it tries to avoid it as much as possible.

Anyway, the real problem here is that smuggling additional interfaces inside
http.ResponseWriter is a problematic design choice, but it probably goes as
deep as the Go language specification itself. But that’s okay, I still prefer
Go over the alternatives ;).

Performance

BenchmarkBaseline-8 	 20000	 94912 ns/op
BenchmarkCaptureMetrics-8	 20000	 95461 ns/op

As you can see, using CaptureMetrics on a vanilla http.Handler introduces an
overhead of ~500 ns per http request on my machine. However, the margin of
error appears to be larger than that, therefor it should be reasonable to
assume that the overhead introduced by CaptureMetrics is absolutely
negligible.

License

MIT

gorilla/handlers

[image: ../../../../_images/handlers.svg]GoDoc [https://godoc.org/github.com/gorilla/handlers]
[image: ../../../../_images/handlers1.svg]CircleCI [https://circleci.com/gh/gorilla/handlers]
[image: ../../../../_images/badge.svg]Sourcegraph [https://sourcegraph.com/github.com/gorilla/handlers?badge]

Package handlers is a collection of handlers (aka “HTTP middleware”) for use
with Go’s net/http package (or any framework supporting http.Handler), including:

	LoggingHandler [https://godoc.org/github.com/gorilla/handlers#LoggingHandler] for logging HTTP requests in the Apache Common Log
Format [http://httpd.apache.org/docs/2.2/logs.html#common].

	CombinedLoggingHandler [https://godoc.org/github.com/gorilla/handlers#CombinedLoggingHandler] for logging HTTP requests in the Apache Combined Log
Format [http://httpd.apache.org/docs/2.2/logs.html#combined] commonly used by
both Apache and nginx.

	CompressHandler [https://godoc.org/github.com/gorilla/handlers#CompressHandler] for gzipping responses.

	ContentTypeHandler [https://godoc.org/github.com/gorilla/handlers#ContentTypeHandler] for validating requests against a list of accepted
content types.

	MethodHandler [https://godoc.org/github.com/gorilla/handlers#MethodHandler] for matching HTTP methods against handlers in a
map[string]http.Handler

	ProxyHeaders [https://godoc.org/github.com/gorilla/handlers#ProxyHeaders] for populating r.RemoteAddr and r.URL.Scheme based on the
X-Forwarded-For, X-Real-IP, X-Forwarded-Proto and RFC7239 Forwarded
headers when running a Go server behind a HTTP reverse proxy.

	CanonicalHost [https://godoc.org/github.com/gorilla/handlers#CanonicalHost] for re-directing to the preferred host when handling multiple
domains (i.e. multiple CNAME aliases).

	RecoveryHandler [https://godoc.org/github.com/gorilla/handlers#RecoveryHandler] for recovering from unexpected panics.

Other handlers are documented on the Gorilla
website [https://www.gorillatoolkit.org/pkg/handlers].

Example

A simple example using handlers.LoggingHandler and handlers.CompressHandler:

import (
 "net/http"
 "github.com/gorilla/handlers"
)

func main() {
 r := http.NewServeMux()

 // Only log requests to our admin dashboard to stdout
 r.Handle("/admin", handlers.LoggingHandler(os.Stdout, http.HandlerFunc(ShowAdminDashboard)))
 r.HandleFunc("/", ShowIndex)

 // Wrap our server with our gzip handler to gzip compress all responses.
 http.ListenAndServe(":8000", handlers.CompressHandler(r))
}

License

BSD licensed. See the included LICENSE file for details.

 [image: ../../../../../_images/chunkreader.svg] [https://godoc.org/github.com/jackc/chunkreader]
[image: ../../../../../_images/chunkreader1.svg]Build Status [https://travis-ci.org/jackc/chunkreader]

chunkreader

Package chunkreader provides an io.Reader wrapper that minimizes IO reads and memory allocations.

Extracted from original implementation in https://github.com/jackc/pgx.

1.10.1 (November 20, 2021)

	Close without waiting for response (Kei Kamikawa)

	Save waiting for network round-trip in CopyFrom (Rueian)

	Fix concurrency issue with ContextWatcher

	LRU.Get always checks context for cancellation / expiration (Georges Varouchas)

1.10.0 (July 24, 2021)

	net.Timeout errors are no longer returned when a query is canceled via context. A wrapped context error is returned.

1.9.0 (July 10, 2021)

	pgconn.Timeout only is true for errors originating in pgconn (Michael Darr)

	Add defaults for sslcert, sslkey, and sslrootcert (Joshua Brindle)

	Solve issue with ‘sslmode=verify-full’ when there are multiple hosts (mgoddard)

	Fix default host when parsing URL without host but with port

	Allow dbname query parameter in URL conn string

	Update underlying dependencies

1.8.1 (March 25, 2021)

	Better connection string sanitization (ip.novikov)

	Use proper pgpass location on Windows (Moshe Katz)

	Use errors instead of golang.org/x/xerrors

	Resume fallback on server error in Connect (Andrey Borodin)

1.8.0 (December 3, 2020)

	Add StatementErrored method to stmtcache.Cache. This allows the cache to purge invalidated prepared statements. (Ethan Pailes)

1.7.2 (November 3, 2020)

	Fix data value slices into work buffer with capacities larger than length.

1.7.1 (October 31, 2020)

	Do not asyncClose after receiving FATAL error from PostgreSQL server

1.7.0 (September 26, 2020)

	Exec(Params|Prepared) return ResultReader with FieldDescriptions loaded

	Add ReceiveResults (Sebastiaan Mannem)

	Fix parsing DSN connection with bad backslash

	Add PgConn.CleanupDone so connection pools can determine when async close is complete

1.6.4 (July 29, 2020)

	Fix deadlock on error after CommandComplete but before ReadyForQuery

	Fix panic on parsing DSN with trailing ‘=’

1.6.3 (July 22, 2020)

	Fix error message after AppendCertsFromPEM failure (vahid-sohrabloo)

1.6.2 (July 14, 2020)

	Update pgservicefile library

1.6.1 (June 27, 2020)

	Update golang.org/x/crypto to latest

	Update golang.org/x/text to 0.3.3

	Fix error handling for bad PGSERVICE definition

	Redact passwords in ParseConfig errors (Lukas Vogel)

1.6.0 (June 6, 2020)

	Fix panic when closing conn during cancellable query

	Fix behavior of sslmode=require with sslrootcert present (Petr Jediný)

	Fix field descriptions available after command concluded (Tobias Salzmann)

	Support connect_timeout (georgysavva)

	Handle IPv6 in connection URLs (Lukas Vogel)

	Fix ValidateConnect with cancelable context

	Improve CopyFrom performance

	Add Config.Copy (georgysavva)

1.5.0 (March 30, 2020)

	Update golang.org/x/crypto for security fix

	Implement “verify-ca” SSL mode (Greg Curtis)

1.4.0 (March 7, 2020)

	Fix ExecParams and ExecPrepared handling of empty query.

	Support reading config from PostgreSQL service files.

1.3.2 (February 14, 2020)

	Update chunkreader to v2.0.1 for optimized default buffer size.

1.3.1 (February 5, 2020)

	Fix CopyFrom deadlock when multiple NoticeResponse received during copy

1.3.0 (January 23, 2020)

	Add Hijack and Construct.

	Update pgproto3 to v2.0.1.

1.2.1 (January 13, 2020)

	Fix data race in context cancellation introduced in v1.2.0.

1.2.0 (January 11, 2020)

Features

	Add Insert(), Update(), Delete(), and Select() statement type query methods to CommandTag.

	Add PgError.SQLState method. This could be used for compatibility with other drivers and databases.

Performance

	Improve performance when context.Background() is used. (bakape)

	CommandTag.RowsAffected is faster and does not allocate.

Fixes

	Try to cancel any in-progress query when a conn is closed by ctx cancel.

	Handle NoticeResponse during CopyFrom.

	Ignore errors sending Terminate message while closing connection. This mimics the behavior of libpq PGfinish.

1.1.0 (October 12, 2019)

	Add PgConn.IsBusy() method.

1.0.1 (September 19, 2019)

	Fix statement cache not properly cleaning discarded statements.

 [image: ../../../../_images/pgconn.svg] [https://godoc.org/github.com/jackc/pgconn]
[image: ../../../../_images/badge1.svg]CI

pgconn

Package pgconn is a low-level PostgreSQL database driver. It operates at nearly the same level as the C library libpq.
It is primarily intended to serve as the foundation for higher level libraries such as https://github.com/jackc/pgx.
Applications should handle normal queries with a higher level library and only use pgconn directly when required for
low-level access to PostgreSQL functionality.

Example Usage

pgConn, err := pgconn.Connect(context.Background(), os.Getenv("DATABASE_URL"))
if err != nil {
	log.Fatalln("pgconn failed to connect:", err)
}
defer pgConn.Close(context.Background())

result := pgConn.ExecParams(context.Background(), "SELECT email FROM users WHERE id=$1", [][]byte{[]byte("123")}, nil, nil, nil)
for result.NextRow() {
	fmt.Println("User 123 has email:", string(result.Values()[0]))
}
_, err = result.Close()
if err != nil {
	log.Fatalln("failed reading result:", err)
}

Testing

The pgconn tests require a PostgreSQL database. It will connect to the database specified in the PGX_TEST_CONN_STRING
environment variable. The PGX_TEST_CONN_STRING environment variable can be a URL or DSN. In addition, the standard PG*
environment variables will be respected. Consider using direnv [https://github.com/direnv/direnv] to simplify
environment variable handling.

Example Test Environment

Connect to your PostgreSQL server and run:

create database pgx_test;

Now you can run the tests:

PGX_TEST_CONN_STRING="host=/var/run/postgresql dbname=pgx_test" go test ./...

Connection and Authentication Tests

Pgconn supports multiple connection types and means of authentication. These tests are optional. They
will only run if the appropriate environment variable is set. Run go test -v | grep SKIP to see if any tests are being
skipped. Most developers will not need to enable these tests. See ci/setup_test.bash for an example set up if you need change
authentication code.

 [image: ../../../../_images/pgio.svg] [https://godoc.org/github.com/jackc/pgio]
[image: ../../../../_images/pgio1.svg]Build Status [https://travis-ci.org/jackc/pgio]

pgio

Package pgio is a low-level toolkit building messages in the PostgreSQL wire protocol.

pgio provides functions for appending integers to a []byte while doing byte
order conversion.

Extracted from original implementation in https://github.com/jackc/pgx.

 [image: ../../../../_images/pgpassfile.svg] [https://godoc.org/github.com/jackc/pgpassfile]
[image: ../../../../_images/pgpassfile1.svg]Build Status [https://travis-ci.org/jackc/pgpassfile]

pgpassfile

Package pgpassfile is a parser PostgreSQL .pgpass files.

Extracted and rewritten from original implementation in https://github.com/jackc/pgx.

 [image: ../../../../../_images/pgproto3.svg] [https://godoc.org/github.com/jackc/pgproto3]
[image: ../../../../../_images/pgproto31.svg]Build Status [https://travis-ci.org/jackc/pgproto3]

pgproto3

Package pgproto3 is a encoder and decoder of the PostgreSQL wire protocol version 3.

pgproto3 can be used as a foundation for PostgreSQL drivers, proxies, mock servers, load balancers and more.

See example/pgfortune for a playful example of a fake PostgreSQL server.

Extracted from original implementation in https://github.com/jackc/pgx.

 [image: ../../../../_images/pgservicefile.svg] [https://godoc.org/github.com/jackc/pgservicefile]
[image: ../../../../_images/pgservicefile1.svg]Build Status [https://travis-ci.org/jackc/pgservicefile]

pgservicefile

Package pgservicefile is a parser for PostgreSQL service files (e.g. .pg_service.conf).

1.9.1 (November 28, 2021)

	Fix: binary timestamp is assumed to be in UTC (restored behavior changed in v1.9.0)

1.9.0 (November 20, 2021)

	Fix binary hstore null decoding

	Add shopspring/decimal.NullDecimal support to integration (Eli Treuherz)

	Inet.Set supports bare IP address (Carl Dunham)

	Add zeronull.Float8

	Fix NULL being lost when scanning unknown OID into sql.Scanner

	Fix BPChar.AssignTo **rune

	Add support for fmt.Stringer and driver.Valuer in String fields encoding (Jan Dubsky)

	Fix really big timestamp(tz)s binary format parsing (e.g. year 294276) (Jim Tsao)

	Support map[string]*string as hstore (Adrian Sieger)

	Fix parsing text array with negative bounds

	Add infinity support for numeric (Jim Tsao)

1.8.1 (July 24, 2021)

	Cleaned up Go module dependency chain

1.8.0 (July 10, 2021)

	Maintain host bits for inet types (Cameron Daniel)

	Support pointers of wrapping structs (Ivan Daunis)

	Register JSONBArray at NewConnInfo() (Rueian)

	CompositeTextScanner handles backslash escapes

1.7.0 (March 25, 2021)

	Fix scanning int into **sql.Scanner implementor

	Add tsrange array type (Vasilii Novikov)

	Fix: escaped strings when they start or end with a newline char (Stephane Martin)

	Accept nil *time.Time in Time.Set

	Fix numeric NaN support

	Use Go 1.13 errors instead of xerrors

1.6.2 (December 3, 2020)

	Fix panic on assigning empty array to non-slice or array

	Fix text array parsing disambiguates NULL and “NULL”

	Fix Timestamptz.DecodeText with too short text

1.6.1 (October 31, 2020)

	Fix simple protocol empty array support

1.6.0 (October 24, 2020)

	Fix AssignTo pointer to pointer to slice and named types.

	Fix zero length array assignment (Simo Haasanen)

	Add float64, float32 convert to int2, int4, int8 (lqu3j)

	Support setting infinite timestamps (Erik Agsjö)

	Polygon improvements (duohedron)

	Fix Inet.Set with nil (Tomas Volf)

1.5.0 (September 26, 2020)

	Add slice of slice mapping to multi-dimensional arrays (Simo Haasanen)

	Fix JSONBArray

	Fix selecting empty array

	Text formatted values except bytea can be directly scanned to []byte

	Add JSON marshalling for UUID (bakmataliev)

	Improve point type conversions (bakmataliev)

1.4.2 (July 22, 2020)

	Fix encoding of a large composite data type (Yaz Saito)

1.4.1 (July 14, 2020)

	Fix ArrayType DecodeBinary empty array breaks future reads

1.4.0 (June 27, 2020)

	Add JSON support to ext/gofrs-uuid

	Performance improvements in Scan path

	Improved ext/shopspring-numeric binary decoding performance

	Add composite type support (Maxim Ivanov and Jack Christensen)

	Add better generic enum type support

	Add generic array type support

	Clarify and normalize Value semantics

	Fix hstore with empty string values

	Numeric supports NaN values (leighhopcroft)

	Add slice of pointer support to array types (megaturbo)

	Add jsonb array type (tserakhau)

	Allow converting intervals with months and days to duration

1.3.0 (March 30, 2020)

	Get implemented on T instead of *T

	Set will call Get on src if possible

	Range types Set method supports its own type, string, and nil

	Date.Set parses string

	Fix correct format verb for unknown type error (Robert Welin)

	Truncate nanoseconds in EncodeText for Timestamptz and Timestamp

1.2.0 (February 5, 2020)

	Add zeronull package for easier NULL <-> zero conversion

	Add JSON marshalling for shopspring-numeric extension

	Add JSON marshalling for Bool, Date, JSON/B, Timestamptz (Jeffrey Stiles)

	Fix null status in UnmarshalJSON for some types (Jeffrey Stiles)

1.1.0 (January 11, 2020)

	Add PostgreSQL time type support

	Add more automatic conversions of integer arrays of different types (Jean-Philippe Quéméner)

1.0.3 (November 16, 2019)

	Support initializing Array types from a slice of the value (Alex Gaynor)

1.0.2 (October 22, 2019)

	Fix scan into null into pointer to pointer implementing Decode* interface. (Jeremy Altavilla)

1.0.1 (September 19, 2019)

	Fix daterange OID

 [image: ../../../../_images/pgtype.svg] [https://godoc.org/github.com/jackc/pgtype]
[image: ../../../../_images/badge2.svg]CI

pgtype

pgtype implements Go types for over 70 PostgreSQL types. pgtype is the type system underlying the
https://github.com/jackc/pgx PostgreSQL driver. These types support the binary format for enhanced performance with pgx.
They also support the database/sql Scan and Value interfaces and can be used with https://github.com/lib/pq.

4.14.1 (November 28, 2021)

	Upgrade pgtype to v1.9.1 (fixes unintentional change to timestamp binary decoding)

	Start pgxpool background health check after initial connections

4.14.0 (November 20, 2021)

	Upgrade pgconn to v1.10.1

	Upgrade pgproto3 to v2.2.0

	Upgrade pgtype to v1.9.0

	Upgrade puddle to v1.2.0

	Add QueryFunc to BatchResults

	Add context options to zerologadapter (Thomas Frössman)

	Add zerologadapter.NewContextLogger (urso)

	Eager initialize minpoolsize on connect (Daniel)

	Unpin memory used by large queries immediately after use

4.13.0 (July 24, 2021)

	Trimmed pseudo-dependencies in Go modules from other packages tests

	Upgrade pgconn – context cancellation no longer will return a net.Error

	Support time durations for simple protocol (Michael Darr)

4.12.0 (July 10, 2021)

	ResetSession hook is called before a connection is reused from pool for another query (Dmytro Haranzha)

	stdlib: Add RandomizeHostOrderFunc (dkinder)

	stdlib: add OptionBeforeConnect (dkinder)

	stdlib: Do not reuse ConnConfig strings (Andrew Kimball)

	stdlib: implement Conn.ResetSession (Jonathan Amsterdam)

	Upgrade pgconn to v1.9.0

	Upgrade pgtype to v1.8.0

4.11.0 (March 25, 2021)

	Add BeforeConnect callback to pgxpool.Config (Robert Froehlich)

	Add Ping method to pgxpool.Conn (davidsbond)

	Added a kitlog level log adapter (Fabrice Aneche)

	Make ScanArgError public to allow identification of offending column (Pau Sanchez)

	Add *pgxpool.AcquireFunc

	Add BeginFunc and BeginTxFunc

	Add prefer_simple_protocol to connection string

	Add logging on CopyFrom (Patrick Hemmer)

	Add comment support when sanitizing SQL queries (Rusakow Andrew)

	Do not panic on double close of pgxpool.Pool (Matt Schultz)

	Avoid panic on SendBatch on closed Tx (Matt Schultz)

	Update pgconn to v1.8.1

	Update pgtype to v1.7.0

4.10.1 (December 19, 2020)

	Fix panic on Query error with nil stmtcache.

4.10.0 (December 3, 2020)

	Add CopyFromSlice to simplify CopyFrom usage (Egon Elbre)

	Remove broken prepared statements from stmtcache (Ethan Pailes)

	stdlib: consider any Ping error as fatal

	Update puddle to v1.1.3 - this fixes an issue where concurrent Acquires can hang when a connection cannot be established

	Update pgtype to v1.6.2

4.9.2 (November 3, 2020)

The underlying library updates fix an issue where appending to a scanned slice could corrupt other data.

	Update pgconn to v1.7.2

	Update pgproto3 to v2.0.6

4.9.1 (October 31, 2020)

	Update pgconn to v1.7.1

	Update pgtype to v1.6.1

	Fix SendBatch of all prepared statements with statement cache disabled

4.9.0 (September 26, 2020)

	pgxpool now waits for connection cleanup to finish before making room in pool for another connection. This prevents temporarily exceeding max pool size.

	Fix when scanning a column to nil to skip it on the first row but scanning it to a real value on a subsequent row.

	Fix prefer simple protocol with prepared statements. (Jinzhu)

	Fix FieldDescriptions not being available on Rows before calling Next the first time.

	Various minor fixes in updated versions of pgconn, pgtype, and puddle.

4.8.1 (July 29, 2020)

	Update pgconn to v1.6.4

	Fix deadlock on error after CommandComplete but before ReadyForQuery

	Fix panic on parsing DSN with trailing ‘=’

4.8.0 (July 22, 2020)

	All argument types supported by native pgx should now also work through database/sql

	Update pgconn to v1.6.3

	Update pgtype to v1.4.2

4.7.2 (July 14, 2020)

	Improve performance of Columns() (zikaeroh)

	Fix fatal Commit() failure not being considered fatal

	Update pgconn to v1.6.2

	Update pgtype to v1.4.1

4.7.1 (June 29, 2020)

	Fix stdlib decoding error with certain order and combination of fields

4.7.0 (June 27, 2020)

	Update pgtype to v1.4.0

	Update pgconn to v1.6.1

	Update puddle to v1.1.1

	Fix context propagation with Tx commit and Rollback (georgysavva)

	Add lazy connect option to pgxpool (georgysavva)

	Fix connection leak if pgxpool.BeginTx() fail (Jean-Baptiste Bronisz)

	Add native Go slice support for strings and numbers to simple protocol

	stdlib add default timeouts for Conn.Close() and Stmt.Close() (georgysavva)

	Assorted performance improvements especially with large result sets

	Fix close pool on not lazy connect failure (Yegor Myskin)

	Add Config copy (georgysavva)

	Support SendBatch with Simple Protocol (Jordan Lewis)

	Better error logging on rows close (Igor V. Kozinov)

	Expose stdlib.Conn.Conn() to enable database/sql.Conn.Raw()

	Improve unknown type support for database/sql

	Fix transaction commit failure closing connection

4.6.0 (March 30, 2020)

	stdlib: Bail early if preloading rows.Next() results in rows.Err() (Bas van Beek)

	Sanitize time to microsecond accuracy (Andrew Nicoll)

	Update pgtype to v1.3.0

	Update pgconn to v1.5.0

	Update golang.org/x/crypto for security fix

	Implement “verify-ca” SSL mode

4.5.0 (March 7, 2020)

	Update to pgconn v1.4.0

	Fixes QueryRow with empty SQL

	Adds PostgreSQL service file support

	Add Len() to *pgx.Batch (WGH)

	Better logging for individual batch items (Ben Bader)

4.4.1 (February 14, 2020)

	Update pgconn to v1.3.2 - better default read buffer size

	Fix race in CopyFrom

4.4.0 (February 5, 2020)

	Update puddle to v1.1.0 - fixes possible deadlock when acquire is cancelled

	Update pgconn to v1.3.1 - fixes CopyFrom deadlock when multiple NoticeResponse received during copy

	Update pgtype to v1.2.0

	Add MaxConnIdleTime to pgxpool (Patrick Ellul)

	Add MinConns to pgxpool (Patrick Ellul)

	Fix: stdlib.ReleaseConn closes connections left in invalid state

4.3.0 (January 23, 2020)

	Fix Rows.Values panic when unable to decode

	Add Rows.Values support for unknown types

	Add DriverContext support for stdlib (Alex Gaynor)

	Update pgproto3 to v2.0.1 to never return an io.EOF as it would be misinterpreted by database/sql. Instead return io.UnexpectedEOF.

4.2.1 (January 13, 2020)

	Update pgconn to v1.2.1 (fixes context cancellation data race introduced in v1.2.0))

4.2.0 (January 11, 2020)

	Update pgconn to v1.2.0.

	Update pgtype to v1.1.0.

	Return error instead of panic when wrong number of arguments passed to Exec. (malstoun)

	Fix large objects functionality when PreferSimpleProtocol = true.

	Restore GetDefaultDriver which existed in v3. (Johan Brandhorst)

	Add RegisterConnConfig to stdlib which replaces the removed RegisterDriverConfig from v3.

4.1.2 (October 22, 2019)

	Fix dbSavepoint.Begin recursive self call

	Upgrade pgtype to v1.0.2 - fix scan pointer to pointer

4.1.1 (October 21, 2019)

	Fix pgxpool Rows.CommandTag() infinite loop / typo

4.1.0 (October 12, 2019)

Potentially Breaking Changes

Technically, two changes are breaking changes, but in practice these are extremely unlikely to break existing code.

	Conn.Begin and Conn.BeginTx return a Tx interface instead of the internal dbTx struct. This is necessary for the Conn.Begin method to signature as other methods that begin a transaction.

	Add Conn() to Tx interface. This is necessary to allow code using a Tx to access the *Conn (and pgconn.PgConn) on which the Tx is executing.

Fixes

	Releasing a busy connection closes the connection instead of returning an unusable connection to the pool

	Do not mutate config.Config.OnNotification in connect

4.0.1 (September 19, 2019)

	Fix statement cache cleanup.

	Corrected daterange OID.

	Fix Tx when committing or rolling back multiple times in certain cases.

	Improve documentation.

4.0.0 (September 14, 2019)

v4 is a major release with many significant changes some of which are breaking changes. The most significant are
included below.

	Simplified establishing a connection with a connection string.

	All potentially blocking operations now require a context.Context. The non-context aware functions have been removed.

	OIDs are hard-coded for known types. This saves the query on connection.

	Context cancellations while network activity is in progress is now always fatal. Previously, it was sometimes recoverable. This led to increased complexity in pgx itself and in application code.

	Go modules are required.

	Errors are now implemented in the Go 1.13 style.

	Rows and Tx are now interfaces.

	The connection pool as been decoupled from pgx and is now a separate, included package (github.com/jackc/pgx/v4/pgxpool).

	pgtype has been spun off to a separate package (github.com/jackc/pgtype).

	pgproto3 has been spun off to a separate package (github.com/jackc/pgproto3/v2).

	Logical replication support has been spun off to a separate package (github.com/jackc/pglogrepl).

	Lower level PostgreSQL functionality is now implemented in a separate package (github.com/jackc/pgconn).

	Tests are now configured with environment variables.

	Conn has an automatic statement cache by default.

	Batch interface has been simplified.

	QueryArgs has been removed.

 [image: ../../../../../_images/pgx.svg] [https://pkg.go.dev/github.com/jackc/pgx/v4]
[image: ../../../../../_images/pgx1.svg]Build Status [https://travis-ci.org/jackc/pgx]

pgx - PostgreSQL Driver and Toolkit

pgx is a pure Go driver and toolkit for PostgreSQL.

pgx aims to be low-level, fast, and performant, while also enabling PostgreSQL-specific features that the standard database/sql package does not allow for.

The driver component of pgx can be used alongside the standard database/sql package.

The toolkit component is a related set of packages that implement PostgreSQL functionality such as parsing the wire protocol
and type mapping between PostgreSQL and Go. These underlying packages can be used to implement alternative drivers,
proxies, load balancers, logical replication clients, etc.

The current release of pgx v4 requires Go modules. To use the previous version, checkout and vendor the v3 branch.

Example Usage

package main

import (
	"context"
	"fmt"
	"os"

	"github.com/jackc/pgx/v4"
)

func main() {
	// urlExample := "postgres://username:password@localhost:5432/database_name"
	conn, err := pgx.Connect(context.Background(), os.Getenv("DATABASE_URL"))
	if err != nil {
		fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
		os.Exit(1)
	}
	defer conn.Close(context.Background())

	var name string
	var weight int64
	err = conn.QueryRow(context.Background(), "select name, weight from widgets where id=$1", 42).Scan(&name, &weight)
	if err != nil {
		fmt.Fprintf(os.Stderr, "QueryRow failed: %v\n", err)
		os.Exit(1)
	}

	fmt.Println(name, weight)
}

See the getting started guide [https://github.com/jackc/pgx/wiki/Getting-started-with-pgx] for more information.

Choosing Between the pgx and database/sql Interfaces

It is recommended to use the pgx interface if:

	The application only targets PostgreSQL.

	No other libraries that require database/sql are in use.

The pgx interface is faster and exposes more features.

The database/sql interface only allows the underlying driver to return or receive the following types: int64,
float64, bool, []byte, string, time.Time, or nil. Handling other types requires implementing the
database/sql.Scanner and the database/sql/driver/driver.Valuer interfaces which require transmission of values in text format. The binary format can be substantially faster, which is what the pgx interface uses.

Features

pgx supports many features beyond what is available through database/sql:

	Support for approximately 70 different PostgreSQL types

	Automatic statement preparation and caching

	Batch queries

	Single-round trip query mode

	Full TLS connection control

	Binary format support for custom types (allows for much quicker encoding/decoding)

	COPY protocol support for faster bulk data loads

	Extendable logging support including built-in support for log15adapter, logrus [https://github.com/sirupsen/logrus], zap [https://github.com/uber-go/zap], and zerolog [https://github.com/rs/zerolog]

	Connection pool with after-connect hook for arbitrary connection setup

	Listen / notify

	Conversion of PostgreSQL arrays to Go slice mappings for integers, floats, and strings

	Hstore support

	JSON and JSONB support

	Maps inet and cidr PostgreSQL types to net.IPNet and net.IP

	Large object support

	NULL mapping to Null* struct or pointer to pointer

	Supports database/sql.Scanner and database/sql/driver.Valuer interfaces for custom types

	Notice response handling

	Simulated nested transactions with savepoints

Performance

There are three areas in particular where pgx can provide a significant performance advantage over the standard
database/sql interface and other drivers:

	PostgreSQL specific types - Types such as arrays can be parsed much quicker because pgx uses the binary format.

	Automatic statement preparation and caching - pgx will prepare and cache statements by default. This can provide an
significant free improvement to code that does not explicitly use prepared statements. Under certain workloads, it can
perform nearly 3x the number of queries per second.

	Batched queries - Multiple queries can be batched together to minimize network round trips.

Comparison with Alternatives

	pq [http://godoc.org/github.com/lib/pq]

	go-pg [https://github.com/go-pg/pg]

For prepared queries with small sets of simple data types, all drivers will have have similar performance. However, if prepared statements aren’t being explicitly used, pgx can have a significant performance advantage due to automatic statement preparation.
pgx also can perform better when using PostgreSQL-specific data types or query batching. See
go_db_bench [https://github.com/jackc/go_db_bench] for some database driver benchmarks.

Compatibility with database/sql

pq is exclusively used with database/sql. go-pg does not use database/sql at all. pgx supports database/sql as well as
its own interface.

Level of access, ORM

go-pg is a PostgreSQL client and ORM. It includes many features that traditionally sit above the database driver, such as ORM, struct mapping, soft deletes, schema migrations, and sharding support.

pgx is “closer to the metal” and such abstractions are beyond the scope of the pgx project, which first and foremost, aims to be a performant driver and toolkit.

Testing

pgx tests naturally require a PostgreSQL database. It will connect to the database specified in the PGX_TEST_DATABASE environment
variable. The PGX_TEST_DATABASE environment variable can either be a URL or DSN. In addition, the standard PG* environment
variables will be respected. Consider using direnv [https://github.com/direnv/direnv] to simplify environment variable
handling.

Example Test Environment

Connect to your PostgreSQL server and run:

create database pgx_test;

Connect to the newly-created database and run:

create domain uint64 as numeric(20,0);

Now, you can run the tests:

PGX_TEST_DATABASE="host=/var/run/postgresql database=pgx_test" go test ./...

In addition, there are tests specific for PgBouncer that will be executed if PGX_TEST_PGBOUNCER_CONN_STRING is set.

Supported Go and PostgreSQL Versions

pgx supports the same versions of Go and PostgreSQL that are supported by their respective teams. For Go [https://golang.org/doc/devel/release.html#policy] that is the two most recent major releases and for PostgreSQL [https://www.postgresql.org/support/versioning/] the major releases in the last 5 years. This means pgx supports Go 1.16 and higher and PostgreSQL 10 and higher. pgx also is tested against the latest version of CockroachDB [https://www.cockroachlabs.com/product/].

Version Policy

pgx follows semantic versioning for the documented public API on stable releases. v4 is the latest stable major version.

PGX Family Libraries

pgx is the head of a family of PostgreSQL libraries. Many of these can be used independently. Many can also be accessed
from pgx for lower-level control.

github.com/jackc/pgconn [https://github.com/jackc/pgconn]

pgconn is a lower-level PostgreSQL database driver that operates at nearly the same level as the C library libpq.

github.com/jackc/pgx/v4/pgxpool [https://github.com/jackc/pgx/tree/master/pgxpool]

pgxpool is a connection pool for pgx. pgx is entirely decoupled from its default pool implementation. This means that pgx can be used with a different pool or without any pool at all.

github.com/jackc/pgx/v4/stdlib [https://github.com/jackc/pgx/tree/master/stdlib]

This is a database/sql compatibility layer for pgx. pgx can be used as a normal database/sql driver, but at any time, the native interface can be acquired for more performance or PostgreSQL specific functionality.

github.com/jackc/pgtype [https://github.com/jackc/pgtype]

Over 70 PostgreSQL types are supported including uuid, hstore, json, bytea, numeric, interval, inet, and arrays. These types support database/sql interfaces and are usable outside of pgx. They are fully tested in pgx and pq. They also support a higher performance interface when used with the pgx driver.

github.com/jackc/pgproto3 [https://github.com/jackc/pgproto3]

pgproto3 provides standalone encoding and decoding of the PostgreSQL v3 wire protocol. This is useful for implementing very low level PostgreSQL tooling.

github.com/jackc/pglogrepl [https://github.com/jackc/pglogrepl]

pglogrepl provides functionality to act as a client for PostgreSQL logical replication.

github.com/jackc/pgmock [https://github.com/jackc/pgmock]

pgmock offers the ability to create a server that mocks the PostgreSQL wire protocol. This is used internally to test pgx by purposely inducing unusual errors. pgproto3 and pgmock together provide most of the foundational tooling required to implement a PostgreSQL proxy or MitM (such as for a custom connection pooler).

github.com/jackc/tern [https://github.com/jackc/tern]

tern is a stand-alone SQL migration system.

github.com/jackc/pgerrcode [https://github.com/jackc/pgerrcode]

pgerrcode contains constants for the PostgreSQL error codes.

3rd Party Libraries with PGX Support

github.com/georgysavva/scany [https://github.com/georgysavva/scany]

Library for scanning data from a database into Go structs and more.

1.2.1 (December 2, 2021)

	TryAcquire now does not block when background constructing resource

1.2.0 (November 20, 2021)

	Add TryAcquire (A. Jensen)

	Fix: remove memory leak / unintentionally pinned memory when shrinking slices (Alexander Staubo)

	Fix: Do not leave pool locked after panic from nil context

1.1.4 (September 11, 2021)

	Fix: Deadlock in CreateResource if pool was closed during resource acquisition (Dmitriy Matrenichev)

1.1.3 (December 3, 2020)

	Fix: Failed resource creation could cause concurrent Acquire to hang. (Evgeny Vanslov)

1.1.2 (September 26, 2020)

	Fix: Resource.Destroy no longer removes itself from the pool before its destructor has completed.

	Fix: Prevent crash when pool is closed while resource is being created.

1.1.1 (April 2, 2020)

	Pool.Close can be safely called multiple times

	AcquireAllIDle immediately returns nil if pool is closed

	CreateResource checks if pool is closed before taking any action

	Fix potential race condition when CreateResource and Close are called concurrently. CreateResource now checks if pool is closed before adding newly created resource to pool.

1.1.0 (February 5, 2020)

	Use runtime.nanotime for faster tracking of acquire time and last usage time.

	Track resource idle time to enable client health check logic. (Patrick Ellul)

	Add CreateResource to construct a new resource without acquiring it. (Patrick Ellul)

	Fix deadlock race when acquire is cancelled. (Michael Tharp)

 [image: ../../../../_images/puddle.svg] [https://godoc.org/github.com/jackc/puddle]
[image: ../../../../_images/puddle1.svg]Build Status [https://travis-ci.org/jackc/puddle]

Puddle

Puddle is a tiny generic resource pool library for Go that uses the standard
context library to signal cancellation of acquires. It is designed to contain
the minimum functionality required for a resource pool. It can be used directly
or it can be used as the base for a domain specific resource pool. For example,
a database connection pool may use puddle internally and implement health checks
and keep-alive behavior without needing to implement any concurrent code of its
own.

Features

	Acquire cancellation via context standard library

	Statistics API for monitoring pool pressure

	No dependencies outside of standard library

	High performance

	100% test coverage

Example Usage

constructor := func(context.Context) (interface{}, error) {
 return net.Dial("tcp", "127.0.0.1:8080")
}
destructor := func(value interface{}) {
 value.(net.Conn).Close()
}
maxPoolSize := 10

pool := puddle.NewPool(constructor, destructor, maxPoolSize)

// Acquire resource from the pool.
res, err := pool.Acquire(context.Background())
if err != nil {
 // ...
}

// Use resource.
_, err = res.Value().(net.Conn).Write([]byte{1})
if err != nil {
 // ...
}

// Release when done.
res.Release()

License

MIT

go-runewidth

[image: ../../../../_images/go-runewidth.png]Build Status [https://travis-ci.org/mattn/go-runewidth]
[image: ../../../../_images/badge3.svg]Codecov [https://codecov.io/gh/mattn/go-runewidth]
[image: ../../../../_images/go-runewidth.svg]GoDoc [http://godoc.org/github.com/mattn/go-runewidth]
[image: ../../../../_images/go-runewidth1.svg]Go Report Card [https://goreportcard.com/report/github.com/mattn/go-runewidth]

Provides functions to get fixed width of the character or string.

Usage

runewidth.StringWidth("つのだ☆HIRO") == 12

Author

Yasuhiro Matsumoto

License

under the MIT License: http://mattn.mit-license.org/2013

Denco [image: ../../../../_images/denco.png]Build Status [https://travis-ci.org/naoina/denco]

The fast and flexible HTTP request router for Go [http://golang.org].

Denco is based on Double-Array implementation of Kocha-urlrouter [https://github.com/naoina/kocha-urlrouter].
However, Denco is optimized and some features added.

Features

	Fast (See go-http-routing-benchmark [https://github.com/naoina/go-http-routing-benchmark])

	URL patterns (/foo/:bar and /foo/*wildcard)

	Small (but enough) URL router API

	HTTP request multiplexer like http.ServeMux

Installation

go get -u github.com/naoina/denco

Using as HTTP request multiplexer

package main

import (
 "fmt"
 "log"
 "net/http"

 "github.com/naoina/denco"
)

func Index(w http.ResponseWriter, r *http.Request, params denco.Params) {
 fmt.Fprintf(w, "Welcome to Denco!\n")
}

func User(w http.ResponseWriter, r *http.Request, params denco.Params) {
 fmt.Fprintf(w, "Hello %s!\n", params.Get("name"))
}

func main() {
 mux := denco.NewMux()
 handler, err := mux.Build([]denco.Handler{
 mux.GET("/", Index),
 mux.GET("/user/:name", User),
 mux.POST("/user/:name", User),
 })
 if err != nil {
 panic(err)
 }
 log.Fatal(http.ListenAndServe(":8080", handler))
}

Using as URL router

package main

import (
	"fmt"

	"github.com/naoina/denco"
)

type route struct {
	name string
}

func main() {
	router := denco.New()
	router.Build([]denco.Record{
		{"/", &route{"root"}},
		{"/user/:id", &route{"user"}},
		{"/user/:name/:id", &route{"username"}},
		{"/static/*filepath", &route{"static"}},
	})

	data, params, found := router.Lookup("/")
	// print `&main.route{name:"root"}, denco.Params(nil), true`.
	fmt.Printf("%#v, %#v, %#v\n", data, params, found)

	data, params, found = router.Lookup("/user/hoge")
	// print `&main.route{name:"user"}, denco.Params{denco.Param{Name:"id", Value:"hoge"}}, true`.
	fmt.Printf("%#v, %#v, %#v\n", data, params, found)

	data, params, found = router.Lookup("/user/hoge/7")
	// print `&main.route{name:"username"}, denco.Params{denco.Param{Name:"name", Value:"hoge"}, denco.Param{Name:"id", Value:"7"}}, true`.
	fmt.Printf("%#v, %#v, %#v\n", data, params, found)

	data, params, found = router.Lookup("/static/path/to/file")
	// print `&main.route{name:"static"}, denco.Params{denco.Param{Name:"filepath", Value:"path/to/file"}}, true`.
	fmt.Printf("%#v, %#v, %#v\n", data, params, found)
}

See Godoc [http://godoc.org/github.com/naoina/denco] for more details.

Getting the value of path parameter

You can get the value of path parameter by 2 ways.

	Using denco.Params.Get [http://godoc.org/github.com/naoina/denco#Params.Get] method

	Find by loop

package main

import (
 "fmt"

 "github.com/naoina/denco"
)

func main() {
 router := denco.New()
 if err := router.Build([]denco.Record{
 {"/user/:name/:id", "route1"},
 }); err != nil {
 panic(err)
 }

 // 1. Using denco.Params.Get method.
 _, params, _ := router.Lookup("/user/alice/1")
 name := params.Get("name")
 if name != "" {
 fmt.Printf("Hello %s.\n", name) // prints "Hello alice.".
 }

 // 2. Find by loop.
 for _, param := range params {
 if param.Name == "name" {
 fmt.Printf("Hello %s.\n", name) // prints "Hello alice.".
 }
 }
}

URL patterns

Denco’s route matching strategy is “most nearly matching”.

When routes /:name and /alice have been built, URI /alice matches the route /alice, not /:name.
Because URI /alice is more match with the route /alice than /:name.

For more example, when routes below have been built:

/user/alice
/user/:name
/user/:name/:id
/user/alice/:id
/user/:id/bob

Routes matching are:

/user/alice => "/user/alice" (no match with "/user/:name")
/user/bob => "/user/:name"
/user/naoina/1 => "/user/:name/1"
/user/alice/1 => "/user/alice/:id" (no match with "/user/:name/:id")
/user/1/bob => "/user/:id/bob" (no match with "/user/:name/:id")
/user/alice/bob => "/user/alice/:id" (no match with "/user/:name/:id" and "/user/:id/bob")

Limitation

Denco has some limitations below.

	Number of param records (such as /:name) must be less than 2^22

	Number of elements of internal slice must be less than 2^22

Benchmarks

cd $GOPATH/github.com/naoina/denco
go test -bench . -benchmem

License

Denco is licensed under the MIT License.

stringutil [image: ../../../../_images/go-stringutil.svg]Build Status [https://travis-ci.org/naoina/go-stringutil]

Installation

go get -u github.com/naoina/go-stringutil

Documentation

See https://godoc.org/github.com/naoina/go-stringutil

License

MIT

TOML parser and encoder library for Golang [image: ../../../../_images/toml.png]Build Status [https://travis-ci.org/naoina/toml]

TOML [https://github.com/toml-lang/toml] parser and encoder library for Golang [http://golang.org/].

This library is compatible with TOML version v0.4.0 [https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.4.0].

Installation

go get -u github.com/naoina/toml

Usage

The following TOML save as example.toml.

This is a TOML document. Boom.

title = "TOML Example"

[owner]
name = "Lance Uppercut"
dob = 1979-05-27T07:32:00-08:00 # First class dates? Why not?

[database]
server = "192.168.1.1"
ports = [8001, 8001, 8002]
connection_max = 5000
enabled = true

[servers]

 # You can indent as you please. Tabs or spaces. TOML don't care.
 [servers.alpha]
 ip = "10.0.0.1"
 dc = "eqdc10"

 [servers.beta]
 ip = "10.0.0.2"
 dc = "eqdc10"

[clients]
data = [["gamma", "delta"], [1, 2]]

Line breaks are OK when inside arrays
hosts = [
 "alpha",
 "omega"
]

Then above TOML will mapping to tomlConfig struct using toml.Unmarshal.

package main

import (
 "io/ioutil"
 "os"
 "time"

 "github.com/naoina/toml"
)

type tomlConfig struct {
 Title string
 Owner struct {
 Name string
 Dob time.Time
 }
 Database struct {
 Server string
 Ports []int
 ConnectionMax uint
 Enabled bool
 }
 Servers map[string]ServerInfo
 Clients struct {
 Data [][]interface{}
 Hosts []string
 }
}

type ServerInfo struct {
 IP net.IP
 DC string
}

func main() {
 f, err := os.Open("example.toml")
 if err != nil {
 panic(err)
 }
 defer f.Close()
 var config Config
 if err := toml.NewDecoder(f).Decode(&config); err != nil {
 panic(err)
 }

 // then to use the unmarshaled config...
 fmt.Println("IP of server 'alpha':", config.Servers["alpha"].IP)
}

Mappings

A key and value of TOML will map to the corresponding field.
The fields of struct for mapping must be exported.

The rules of the mapping of key are following:

Exact matching

timeout_seconds = 256

type Config struct {
	Timeout_seconds int
}

Camelcase matching

server_name = "srv1"

type Config struct {
	ServerName string
}

Uppercase matching

ip = "10.0.0.1"

type Config struct {
	IP string
}

See the following examples for the value mappings.

String

val = "string"

type Config struct {
	Val string
}

Integer

val = 100

type Config struct {
	Val int
}

All types that can be used are following:

	int8 (from -128 to 127)

	int16 (from -32768 to 32767)

	int32 (from -2147483648 to 2147483647)

	int64 (from -9223372036854775808 to 9223372036854775807)

	int (same as int32 on 32bit environment, or int64 on 64bit environment)

	uint8 (from 0 to 255)

	uint16 (from 0 to 65535)

	uint32 (from 0 to 4294967295)

	uint64 (from 0 to 18446744073709551615)

	uint (same as uint on 32bit environment, or uint64 on 64bit environment)

Float

val = 3.1415

type Config struct {
	Val float32
}

All types that can be used are following:

	float32

	float64

Boolean

val = true

type Config struct {
	Val bool
}

Datetime

val = 2014-09-28T21:27:39Z

type Config struct {
	Val time.Time
}

Array

val = ["a", "b", "c"]

type Config struct {
	Val []string
}

Also following examples all can be mapped:

val1 = [1, 2, 3]
val2 = [["a", "b"], ["c", "d"]]
val3 = [[1, 2, 3], ["a", "b", "c"]]
val4 = [[1, 2, 3], [["a", "b"], [true, false]]]

type Config struct {
	Val1 []int
	Val2 [][]string
	Val3 [][]interface{}
	Val4 [][]interface{}
}

Table

[server]
type = "app"

 [server.development]
 ip = "10.0.0.1"

 [server.production]
 ip = "10.0.0.2"

type Config struct {
	Server map[string]Server
}

type Server struct {
	IP string
}

You can also use the following struct instead of map of struct.

type Config struct {
	Server struct {
		Development Server
		Production Server
	}
}

type Server struct {
	IP string
}

Array of Tables

[[fruit]]
 name = "apple"

 [fruit.physical]
 color = "red"
 shape = "round"

 [[fruit.variety]]
 name = "red delicious"

 [[fruit.variety]]
 name = "granny smith"

[[fruit]]
 name = "banana"

 [[fruit.variety]]
 name = "plantain"

type Config struct {
	Fruit []struct {
		Name string
		Physical struct {
			Color string
			Shape string
		}
		Variety []struct {
			Name string
		}
	}
}

Using the encoding.TextUnmarshaler interface

Package toml supports encoding.TextUnmarshaler (and encoding.TextMarshaler). You can
use it to apply custom marshaling rules for certain types. The UnmarshalText method is
called with the value text found in the TOML input. TOML strings are passed unquoted.

duration = "10s"

import time

type Duration time.Duration

// UnmarshalText implements encoding.TextUnmarshaler
func (d *Duration) UnmarshalText(data []byte) error {
 duration, err := time.ParseDuration(string(data))
 if err == nil {
 *d = Duration(duration)
 }
 return err
}

// MarshalText implements encoding.TextMarshaler
func (d Duration) MarshalText() ([]byte, error) {
 return []byte(time.Duration(d).String()), nil
}

type ConfigWithDuration struct {
 Duration Duration
}

Using the toml.UnmarshalerRec interface

You can also override marshaling rules specifically for TOML using the UnmarshalerRec
and MarshalerRec interfaces. These are useful if you want to control how structs or
arrays are handled. You can apply additional validation or set unexported struct fields.

Note: encoding.TextUnmarshaler and encoding.TextMarshaler should be preferred for
simple (scalar) values because they’re also compatible with other formats like JSON or
YAML.

See the UnmarshalerRec example [https://godoc.org/github.com/naoina/toml/#example_UnmarshalerRec].

Using the toml.Unmarshaler interface

If you want to deal with raw TOML syntax, use the Unmarshaler and Marshaler
interfaces. Their input and output is raw TOML syntax. As such, these interfaces are
useful if you want to handle TOML at the syntax level.

See the Unmarshaler example [https://godoc.org/github.com/naoina/toml/#example_Unmarshaler].

API documentation

See Godoc [http://godoc.org/github.com/naoina/toml].

License

MIT

 Copyright (C) 2014 by Oleku Konko

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

ASCII Table Writer

[image: ../../../../_images/tablewriter.png]Build Status [https://travis-ci.org/olekukonko/tablewriter]
[image: ../../../../_images/tablewriter.svg]Total views [https://sourcegraph.com/github.com/olekukonko/tablewriter]
[image: ../../../../_images/tablewriter1.svg]Godoc [https://godoc.org/github.com/olekukonko/tablewriter]

Generate ASCII table on the fly … Installation is simple as

go get github.com/olekukonko/tablewriter

Features

	Automatic Padding

	Support Multiple Lines

	Supports Alignment

	Support Custom Separators

	Automatic Alignment of numbers & percentage

	Write directly to http , file etc via io.Writer

	Read directly from CSV file

	Optional row line via SetRowLine

	Normalise table header

	Make CSV Headers optional

	Enable or disable table border

	Set custom footer support

	Optional identical cells merging

	Set custom caption

	Optional reflowing of paragraphs in multi-line cells.

Example 1 - Basic

data := [][]string{
 []string{"A", "The Good", "500"},
 []string{"B", "The Very very Bad Man", "288"},
 []string{"C", "The Ugly", "120"},
 []string{"D", "The Gopher", "800"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Name", "Sign", "Rating"})

for _, v := range data {
 table.Append(v)
}
table.Render() // Send output

Output 1

+------+-----------------------+--------+
| NAME | SIGN | RATING |
+------+-----------------------+--------+
A	The Good	500
B	The Very very Bad Man	288
C	The Ugly	120
D	The Gopher	800
+------+-----------------------+--------+

Example 2 - Without Border / Footer / Bulk Append

data := [][]string{
 []string{"1/1/2014", "Domain name", "2233", "$10.98"},
 []string{"1/1/2014", "January Hosting", "2233", "$54.95"},
 []string{"1/4/2014", "February Hosting", "2233", "$51.00"},
 []string{"1/4/2014", "February Extra Bandwidth", "2233", "$30.00"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Date", "Description", "CV2", "Amount"})
table.SetFooter([]string{"", "", "Total", "$146.93"}) // Add Footer
table.SetBorder(false) // Set Border to false
table.AppendBulk(data) // Add Bulk Data
table.Render()

Output 2

 DATE | DESCRIPTION | CV2 | AMOUNT
-----------+--------------------------+-------+----------
 1/1/2014 | Domain name | 2233 | $10.98
 1/1/2014 | January Hosting | 2233 | $54.95
 1/4/2014 | February Hosting | 2233 | $51.00
 1/4/2014 | February Extra Bandwidth | 2233 | $30.00
-----------+--------------------------+-------+----------
 TOTAL | $146 93
 --------+----------

Example 3 - CSV

table, _ := tablewriter.NewCSV(os.Stdout, "testdata/test_info.csv", true)
table.SetAlignment(tablewriter.ALIGN_LEFT) // Set Alignment
table.Render()

Output 3

+----------+--------------+------+-----+---------+----------------+
| FIELD | TYPE | NULL | KEY | DEFAULT | EXTRA |
+----------+--------------+------+-----+---------+----------------+
user_id	smallint(5)	NO	PRI	NULL	auto_increment
username	varchar(10)	NO		NULL	
password	varchar(100)	NO		NULL	
+----------+--------------+------+-----+---------+----------------+

Example 4 - Custom Separator

table, _ := tablewriter.NewCSV(os.Stdout, "testdata/test.csv", true)
table.SetRowLine(true) // Enable row line

// Change table lines
table.SetCenterSeparator("*")
table.SetColumnSeparator("╪")
table.SetRowSeparator("-")

table.SetAlignment(tablewriter.ALIGN_LEFT)
table.Render()

Output 4

-----------------------*---------*
╪ FIRST NAME ╪ LAST NAME ╪ SSN ╪
-----------------------*---------*
╪ John ╪ Barry ╪ 123456 ╪
-----------------------*---------*
╪ Kathy ╪ Smith ╪ 687987 ╪
-----------------------*---------*
╪ Bob ╪ McCornick ╪ 3979870 ╪
-----------------------*---------*

Example 5 - Markdown Format

data := [][]string{
	[]string{"1/1/2014", "Domain name", "2233", "$10.98"},
	[]string{"1/1/2014", "January Hosting", "2233", "$54.95"},
	[]string{"1/4/2014", "February Hosting", "2233", "$51.00"},
	[]string{"1/4/2014", "February Extra Bandwidth", "2233", "$30.00"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Date", "Description", "CV2", "Amount"})
table.SetBorders(tablewriter.Border{Left: true, Top: false, Right: true, Bottom: false})
table.SetCenterSeparator("|")
table.AppendBulk(data) // Add Bulk Data
table.Render()

Output 5

DATE	DESCRIPTION	CV2	AMOUNT
1/1/2014	Domain name	2233	$10.98
1/1/2014	January Hosting	2233	$54.95
1/4/2014	February Hosting	2233	$51.00
1/4/2014	February Extra Bandwidth	2233	$30.00

Example 6 - Identical cells merging

data := [][]string{
 []string{"1/1/2014", "Domain name", "1234", "$10.98"},
 []string{"1/1/2014", "January Hosting", "2345", "$54.95"},
 []string{"1/4/2014", "February Hosting", "3456", "$51.00"},
 []string{"1/4/2014", "February Extra Bandwidth", "4567", "$30.00"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Date", "Description", "CV2", "Amount"})
table.SetFooter([]string{"", "", "Total", "$146.93"})
table.SetAutoMergeCells(true)
table.SetRowLine(true)
table.AppendBulk(data)
table.Render()

Output 6

+----------+--------------------------+-------+---------+
| DATE | DESCRIPTION | CV2 | AMOUNT |
+----------+--------------------------+-------+---------+
| 1/1/2014 | Domain name | 1234 | $10.98 |
+ +--------------------------+-------+---------+
| | January Hosting | 2345 | $54.95 |
+----------+--------------------------+-------+---------+
| 1/4/2014 | February Hosting | 3456 | $51.00 |
+ +--------------------------+-------+---------+
| | February Extra Bandwidth | 4567 | $30.00 |
+----------+--------------------------+-------+---------+
| TOTAL | $146 93 |
+----------+--------------------------+-------+---------+

Example 7 - Identical cells merging (specify the column index to merge)

data := [][]string{
 []string{"1/1/2014", "Domain name", "1234", "$10.98"},
 []string{"1/1/2014", "January Hosting", "1234", "$10.98"},
 []string{"1/4/2014", "February Hosting", "3456", "$51.00"},
 []string{"1/4/2014", "February Extra Bandwidth", "4567", "$30.00"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Date", "Description", "CV2", "Amount"})
table.SetFooter([]string{"", "", "Total", "$146.93"})
table.SetAutoMergeCellsByColumnIndex([]int{2, 3})
table.SetRowLine(true)
table.AppendBulk(data)
table.Render()

Output 7

+----------+--------------------------+-------+---------+
| DATE | DESCRIPTION | CV2 | AMOUNT |
+----------+--------------------------+-------+---------+
| 1/1/2014 | Domain name | 1234 | $10.98 |
+----------+--------------------------+ + +
| 1/1/2014 | January Hosting | | |
+----------+--------------------------+-------+---------+
| 1/4/2014 | February Hosting | 3456 | $51.00 |
+----------+--------------------------+-------+---------+
| 1/4/2014 | February Extra Bandwidth | 4567 | $30.00 |
+----------+--------------------------+-------+---------+
| TOTAL | $146.93 |
+----------+--------------------------+-------+---------+

Table with color

data := [][]string{
	[]string{"1/1/2014", "Domain name", "2233", "$10.98"},
	[]string{"1/1/2014", "January Hosting", "2233", "$54.95"},
	[]string{"1/4/2014", "February Hosting", "2233", "$51.00"},
	[]string{"1/4/2014", "February Extra Bandwidth", "2233", "$30.00"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Date", "Description", "CV2", "Amount"})
table.SetFooter([]string{"", "", "Total", "$146.93"}) // Add Footer
table.SetBorder(false) // Set Border to false

table.SetHeaderColor(tablewriter.Colors{tablewriter.Bold, tablewriter.BgGreenColor},
	tablewriter.Colors{tablewriter.FgHiRedColor, tablewriter.Bold, tablewriter.BgBlackColor},
	tablewriter.Colors{tablewriter.BgRedColor, tablewriter.FgWhiteColor},
	tablewriter.Colors{tablewriter.BgCyanColor, tablewriter.FgWhiteColor})

table.SetColumnColor(tablewriter.Colors{tablewriter.Bold, tablewriter.FgHiBlackColor},
	tablewriter.Colors{tablewriter.Bold, tablewriter.FgHiRedColor},
	tablewriter.Colors{tablewriter.Bold, tablewriter.FgHiBlackColor},
	tablewriter.Colors{tablewriter.Bold, tablewriter.FgBlackColor})

table.SetFooterColor(tablewriter.Colors{}, tablewriter.Colors{},
	tablewriter.Colors{tablewriter.Bold},
	tablewriter.Colors{tablewriter.FgHiRedColor})

table.AppendBulk(data)
table.Render()

Table with color Output

[image: ../../../../_images/9fa9121f3db7d098c481c5210ed4309a19066953.png]Table with Color

Example - 8 Table Cells with Color

Individual Cell Colors from func Rich take precedence over Column Colors

data := [][]string{
	[]string{"Test1Merge", "HelloCol2 - 1", "HelloCol3 - 1", "HelloCol4 - 1"},
	[]string{"Test1Merge", "HelloCol2 - 2", "HelloCol3 - 2", "HelloCol4 - 2"},
	[]string{"Test1Merge", "HelloCol2 - 3", "HelloCol3 - 3", "HelloCol4 - 3"},
	[]string{"Test2Merge", "HelloCol2 - 4", "HelloCol3 - 4", "HelloCol4 - 4"},
	[]string{"Test2Merge", "HelloCol2 - 5", "HelloCol3 - 5", "HelloCol4 - 5"},
	[]string{"Test2Merge", "HelloCol2 - 6", "HelloCol3 - 6", "HelloCol4 - 6"},
	[]string{"Test2Merge", "HelloCol2 - 7", "HelloCol3 - 7", "HelloCol4 - 7"},
	[]string{"Test3Merge", "HelloCol2 - 8", "HelloCol3 - 8", "HelloCol4 - 8"},
	[]string{"Test3Merge", "HelloCol2 - 9", "HelloCol3 - 9", "HelloCol4 - 9"},
	[]string{"Test3Merge", "HelloCol2 - 10", "HelloCol3 -10", "HelloCol4 - 10"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Col1", "Col2", "Col3", "Col4"})
table.SetFooter([]string{"", "", "Footer3", "Footer4"})
table.SetBorder(false)

table.SetHeaderColor(tablewriter.Colors{tablewriter.Bold, tablewriter.BgGreenColor},
	tablewriter.Colors{tablewriter.FgHiRedColor, tablewriter.Bold, tablewriter.BgBlackColor},
	tablewriter.Colors{tablewriter.BgRedColor, tablewriter.FgWhiteColor},
	tablewriter.Colors{tablewriter.BgCyanColor, tablewriter.FgWhiteColor})

table.SetColumnColor(tablewriter.Colors{tablewriter.Bold, tablewriter.FgHiBlackColor},
	tablewriter.Colors{tablewriter.Bold, tablewriter.FgHiRedColor},
	tablewriter.Colors{tablewriter.Bold, tablewriter.FgHiBlackColor},
	tablewriter.Colors{tablewriter.Bold, tablewriter.FgBlackColor})

table.SetFooterColor(tablewriter.Colors{}, tablewriter.Colors{},
	tablewriter.Colors{tablewriter.Bold},
	tablewriter.Colors{tablewriter.FgHiRedColor})

colorData1 := []string{"TestCOLOR1Merge", "HelloCol2 - COLOR1", "HelloCol3 - COLOR1", "HelloCol4 - COLOR1"}
colorData2 := []string{"TestCOLOR2Merge", "HelloCol2 - COLOR2", "HelloCol3 - COLOR2", "HelloCol4 - COLOR2"}

for i, row := range data {
	if i == 4 {
		table.Rich(colorData1, []tablewriter.Colors{tablewriter.Colors{}, tablewriter.Colors{tablewriter.Normal, tablewriter.FgCyanColor}, tablewriter.Colors{tablewriter.Bold, tablewriter.FgWhiteColor}, tablewriter.Colors{}})
		table.Rich(colorData2, []tablewriter.Colors{tablewriter.Colors{tablewriter.Normal, tablewriter.FgMagentaColor}, tablewriter.Colors{}, tablewriter.Colors{tablewriter.Bold, tablewriter.BgRedColor}, tablewriter.Colors{tablewriter.FgHiGreenColor, tablewriter.Italic, tablewriter.BgHiCyanColor}})
	}
	table.Append(row)
}

table.SetAutoMergeCells(true)
table.Render()

Table cells with color Output

[image: ../../../../_images/d5a25943a32af114047b1ada21574178c3b28d39.png]Table cells with Color

Example 9 - Set table caption

data := [][]string{
 []string{"A", "The Good", "500"},
 []string{"B", "The Very very Bad Man", "288"},
 []string{"C", "The Ugly", "120"},
 []string{"D", "The Gopher", "800"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Name", "Sign", "Rating"})
table.SetCaption(true, "Movie ratings.")

for _, v := range data {
 table.Append(v)
}
table.Render() // Send output

Note: Caption text will wrap with total width of rendered table.

Output 9

+------+-----------------------+--------+
| NAME | SIGN | RATING |
+------+-----------------------+--------+
A	The Good	500
B	The Very very Bad Man	288
C	The Ugly	120
D	The Gopher	800
+------+-----------------------+--------+
Movie ratings.

Example 10 - Set NoWhiteSpace and TablePadding option

data := [][]string{
 {"node1.example.com", "Ready", "compute", "1.11"},
 {"node2.example.com", "Ready", "compute", "1.11"},
 {"node3.example.com", "Ready", "compute", "1.11"},
 {"node4.example.com", "NotReady", "compute", "1.11"},
}

table := tablewriter.NewWriter(os.Stdout)
table.SetHeader([]string{"Name", "Status", "Role", "Version"})
table.SetAutoWrapText(false)
table.SetAutoFormatHeaders(true)
table.SetHeaderAlignment(ALIGN_LEFT)
table.SetAlignment(ALIGN_LEFT)
table.SetCenterSeparator("")
table.SetColumnSeparator("")
table.SetRowSeparator("")
table.SetHeaderLine(false)
table.SetBorder(false)
table.SetTablePadding("\t") // pad with tabs
table.SetNoWhiteSpace(true)
table.AppendBulk(data) // Add Bulk Data
table.Render()

Output 10

NAME 	STATUS 	ROLE 	VERSION
node1.example.com	Ready 	compute	1.11 	
node2.example.com	Ready 	compute	1.11 	
node3.example.com	Ready 	compute	1.11 	
node4.example.com	NotReady	compute	1.11 	

Render table into a string

Instead of rendering the table to io.Stdout you can also render it into a string. Go 1.10 introduced the strings.Builder type which implements the io.Writer interface and can therefore be used for this task. Example:

package main

import (
 "strings"
 "fmt"

 "github.com/olekukonko/tablewriter"
)

func main() {
 tableString := &strings.Builder{}
 table := tablewriter.NewWriter(tableString)

 /*
 * Code to fill the table
 */

 table.Render()

 fmt.Println(tableString.String())
}

TODO

	~~Import Directly from CSV~~ - done

	~~Support for SetFooter~~ - done

	~~Support for SetBorder~~ - done

	~~Support table with uneven rows~~ - done

	~~Support custom alignment~~

	General Improvement & Optimisation

	NewHTML Parse table from HTML

Unicode Text Segmentation for Go

[image: ../../../../_images/godoc-reference-blue1.svg]Godoc Reference [https://godoc.org/github.com/rivo/uniseg]
[image: ../../../../_images/go%20report-A%2B-brightgreen.svg]Go Report [https://goreportcard.com/report/github.com/rivo/uniseg]

This Go package implements Unicode Text Segmentation according to Unicode Standard Annex #29 [http://unicode.org/reports/tr29/] (Unicode version 12.0.0).

At this point, only the determination of grapheme cluster boundaries is implemented.

Background

In Go, strings are read-only slices of bytes [https://blog.golang.org/strings]. They can be turned into Unicode code points using the for loop or by casting: []rune(str). However, multiple code points may be combined into one user-perceived character or what the Unicode specification calls “grapheme cluster”. Here are some examples:

String	Bytes (UTF-8)	Code points (runes)	Grapheme clusters
Käse	6 bytes: 4b 61 cc 88 73 65	5 code points: 4b 61 308 73 65	4 clusters: [4b],[61 308],[73],[65]
🏳️‍🌈	14 bytes: f0 9f 8f b3 ef b8 8f e2 80 8d f0 9f 8c 88	4 code points: 1f3f3 fe0f 200d 1f308	1 cluster: [1f3f3 fe0f 200d 1f308]
🇩🇪	8 bytes: f0 9f 87 a9 f0 9f 87 aa	2 code points: 1f1e9 1f1ea	1 cluster: [1f1e9 1f1ea]

This package provides a tool to iterate over these grapheme clusters. This may be used to determine the number of user-perceived characters, to split strings in their intended places, or to extract individual characters which form a unit.

Installation

go get github.com/rivo/uniseg

Basic Example

package uniseg

import (
	"fmt"

	"github.com/rivo/uniseg"
)

func main() {
	gr := uniseg.NewGraphemes("👍🏼!")
	for gr.Next() {
		fmt.Printf("%x ", gr.Runes())
	}
	// Output: [1f44d 1f3fc] [21]
}

Documentation

Refer to https://godoc.org/github.com/rivo/uniseg for the package’s documentation.

Dependencies

This package does not depend on any packages outside the standard library.

Your Feedback

Add your issue here on GitHub. Feel free to get in touch if you have any questions.

Version

Version tags will be introduced once Golang modules are official. Consider this version 0.1.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at tealeg@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Kingpin - A Go (golang) command line and flag parser [image: ../../../../_images/kingpin.png]Build Status [https://travis-ci.org/alecthomas/kingpin]

(check out v2-unstable [https://github.com/alecthomas/kingpin/tree/v2-unstable] for bleeding edge features)

Features

	POSIX-style short flag combining.

	Parsed, type-safe flags.

	Parsed, type-safe positional arguments.

	Support for required flags and required positional arguments

	Callbacks per command, flag and argument.

	Help output that isn’t as ugly as sin.

Versions

Kingpin uses gopkg.in [https://gopkg.in/alecthomas/kingpin.v1] for versioning.

Usage:

import "gopkg.in/alecthomas/kingpin.v1"

Changes

	2015-01-23 – Stable v1.3.4 release.

	Support “–” for separating flags from positional arguments.

	Support loading flags from files (ParseWithFileExpansion()). Use @FILE as an argument.

	Add post-app and post-cmd validation hooks. This allows arbitrary validation to be added.

	A bunch of improvements to help usage and formatting.

	Support arbitrarily nested sub-commands.

	2014-07-08 – Stable v1.2.0 release.

	Pass any value through to Strings() when final argument.
Allows for values that look like flags to be processed.

	Allow --help to be used with commands.

	Support Hidden() flags.

	Parser for units.Base2Bytes [https://github.com/alecthomas/units]
type. Allows for flags like --ram=512MB or --ram=1GB.

	Add an Enum() value, allowing only one of a set of values
to be selected. eg. Flag(...).Enum("debug", "info", "warning").

	2014-06-27 – Stable v1.1.0 release.

	Bug fixes.

	Always return an error (rather than panicing) when misconfigured.

	OpenFile(flag, perm) value type added, for finer control over opening files.

	Significantly improved usage formatting.

	2014-06-19 – Stable v1.0.0 release.

	Support cumulative positional arguments.

	Return error rather than panic when there are fatal errors not caught by
the type system. eg. when a default value is invalid.

	Use gokpg.in.

	2014-06-10 – Place-holder streamlining.

	Renamed MetaVar to PlaceHolder.

	Removed MetaVarFromDefault. Kingpin now uses heuristics
to determine what to display.

Simple Example

Kingpin can be used for simple flag+arg applications like so:

$ ping --help
usage: ping [<flags>] <ip> [<count>]

Flags:
 --debug Enable debug mode.
 --help Show help.
 -t, --timeout=5s Timeout waiting for ping.

Args:
 <ip> IP address to ping.
 [<count>] Number of packets to send
$ ping 1.2.3.4 5
Would ping: 1.2.3.4 with timeout 5s and count 0

From the following source:

package main

import (
 "fmt"

 "gopkg.in/alecthomas/kingpin.v1"
)

var (
 debug = kingpin.Flag("debug", "Enable debug mode.").Bool()
 timeout = kingpin.Flag("timeout", "Timeout waiting for ping.").Default("5s").OverrideDefaultFromEnvar("PING_TIMEOUT").Short('t').Duration()
 ip = kingpin.Arg("ip", "IP address to ping.").Required().IP()
 count = kingpin.Arg("count", "Number of packets to send").Int()
)

func main() {
 kingpin.Version("0.0.1")
 kingpin.Parse()
 fmt.Printf("Would ping: %s with timeout %s and count %d", *ip, *timeout, *count)
}

Complex Example

Kingpin can also produce complex command-line applications with global flags,
subcommands, and per-subcommand flags, like this:

$ chat --help
usage: chat [<flags>] <command> [<flags>] [<args> ...]

A command-line chat application.

Flags:
 --help Show help.
 --debug Enable debug mode.
 --server=127.0.0.1 Server address.

Commands:
 help [<command>]
 Show help for a command.

 register <nick> <name>
 Register a new user.

 post [<flags>] <channel> [<text>]
 Post a message to a channel.

$ chat help post
usage: chat [<flags>] post [<flags>] <channel> [<text>]

Post a message to a channel.

Flags:
 --image=IMAGE Image to post.

Args:
 <channel> Channel to post to.
 [<text>] Text to post.

$ chat post --image=~/Downloads/owls.jpg pics
...

From this code:

package main

import (
 "os"
 "strings"
 "gopkg.in/alecthomas/kingpin.v1"
)

var (
 app = kingpin.New("chat", "A command-line chat application.")
 debug = app.Flag("debug", "Enable debug mode.").Bool()
 serverIP = app.Flag("server", "Server address.").Default("127.0.0.1").IP()

 register = app.Command("register", "Register a new user.")
 registerNick = register.Arg("nick", "Nickname for user.").Required().String()
 registerName = register.Arg("name", "Name of user.").Required().String()

 post = app.Command("post", "Post a message to a channel.")
 postImage = post.Flag("image", "Image to post.").File()
 postChannel = post.Arg("channel", "Channel to post to.").Required().String()
 postText = post.Arg("text", "Text to post.").Strings()
)

func main() {
 switch kingpin.MustParse(app.Parse(os.Args[1:])) {
 // Register user
 case register.FullCommand():
 println(*registerNick)

 // Post message
 case post.FullCommand():
 if *postImage != nil {
 }
 text := strings.Join(*postText, " ")
 println("Post:", text)
 }
}

Reference Documentation

Help

Second to parsing, providing the user with useful help is probably the most
important thing a command-line parser does.

Since 1.3.x, Kingpin uses a bunch of heuristics to display help. For example,
--help should generally “just work” without much thought from users.

Sub-commands

Kingpin supports nested sub-commands, with separate flag and positional
arguments per sub-command. Note that positional arguments may only occur after
sub-commands.

For example:

var (
 deleteCommand = kingpin.Command("delete", "Delete an object.")
 deleteUserCommand = deleteCommand.Command("user", "Delete a user.")
 deleteUserUIDFlag = deleteUserCommand.Flag("uid", "Delete user by UID rather than username.")
 deleteUserUsername = deleteUserCommand.Arg("username", "Username to delete.")
 deletePostCommand = deleteCommand.Command("post", "Delete a post.")
)

func main() {
 switch kingpin.Parse() {
 case "delete user":
 case "delete post":
 }
}

Custom Parsers

Kingpin supports both flag and positional argument parsers for converting to
Go types. For example, some included parsers are Int(), Float(),
Duration() and ExistingFile().

Parsers conform to Go’s flag.Value [http://godoc.org/flag#Value]
interface, so any existing implementations will work.

For example, a parser for accumulating HTTP header values might look like this:

type HTTPHeaderValue http.Header

func (h *HTTPHeaderValue) Set(value string) error {
 parts := strings.SplitN(value, ":", 2)
 if len(parts) != 2 {
 return fmt.Errorf("expected HEADER:VALUE got '%s'", value)
 }
 (*http.Header)(h).Add(parts[0], parts[1])
 return nil
}

func (h *HTTPHeaderValue) String() string {
 return ""
}

As a convenience, I would recommend something like this:

func HTTPHeader(s Settings) (target *http.Header) {
 target = new(http.Header)
 s.SetValue((*HTTPHeaderValue)(target))
 return
}

You would use it like so:

headers = HTTPHeader(kingpin.Flag("header", "Add a HTTP header to the request.").Short('H'))

Default Values

The default value is the zero value for a type. This can be overridden with
the Default(value) function on flags and arguments. This function accepts a
string, which is parsed by the value itself, so it must be compliant with
the format expected.

Place-holders in Help

The place-holder value for a flag is the value used in the help to describe
the value of a non-boolean flag.

The value provided to PlaceHolder() is used if provided, then the value
provided by Default() if provided, then finally the capitalised flag name is
used.

Here are some examples of flags with various permutations:

--name=NAME // Flag(...).String()
--name="Harry" // Flag(...).Default("Harry").String()
--name=FULL-NAME // flag(...).PlaceHolder("FULL-NAME").Default("Harry").String()

Consuming all remaining arguments

A common command-line idiom is to use all remaining arguments for some
purpose. eg. The following command accepts an arbitrary number of
IP addresses as positional arguments:

./cmd ping 10.1.1.1 192.168.1.1

Kingpin supports this by having Value provide a IsCumulative() bool
function. If this function exists and returns true, the value parser will be
called repeatedly for every remaining argument.

Examples of this are the Strings() and StringMap() values.

To implement the above example we might do something like this:

type ipList []net.IP

func (i *ipList) Set(value string) error {
 if ip := net.ParseIP(value); ip == nil {
 return fmt.Errorf("'%s' is not an IP address", value)
 } else {
 *i = append(*i, ip)
 return nil
 }
}

func (i *ipList) String() string {
 return ""
}

func (i *ipList) IsCumulative() bool {
 return true
}

func IPList(s Settings) (target *[]net.IP) {
 target = new([]net.IP)
 s.SetValue((*ipList)(target))
 return
}

And use it like so:

ips := IPList(kingpin.Arg("ips", "IP addresses to ping."))

 _static/file.png

_static/down-pressed.png

_static/down.png

_images/go-runewidth.png
“build passing

_static/up-pressed.png

_images/d5a25943a32af114047b1ada21574178c3b28d39.png
|

+

|

|

|

Test2Merge |
TestCOLOR1Merge

TestCOLORZ2Merge |

Test2Merge |

|

|

|

|

|

+

Test3Merge

HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2
HelloCol2

R
S
| HelloCol3 - 1
| HelloCol3 - 2
| HelloCol3 - 3
| HelloCol3 - 4
| HelloCol3 - COLOR1
| HelloCol3 - COLORZ
| HelloCol3 - 5
| HelloCol3 - 6
| HelloCol3 - 7
| HelloCol3 - 8
| HelloCol3 - 9
| HelloCol3 -10
S

HelloCol4 - 1
HelloCol4 - 2
HelloCol4 - 3
HelloCol4 - 4
HelloCol4 - COLOR1

HelloCol4 - 5
HelloCol4 - 6
HelloCol4 - 7
HelloCol4 - 8
HelloCol4 - 9
HelloCol4 - 10

_static/minus.png

_images/denco.png
“build passing

_static/plus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/9fa9121f3db7d098c481c5210ed4309a19066953.png
IIIIIII | DESCRIPTION | ! IIIIII HM@UNTI

1/1/2014 | Domain name | 2233
1/1/2014 | January Hosting | 2233
1/4/2014 | February Hosting | 2233
1/4/2014 | February Extra Bandwidth | 2233
p—————— —_—————————— t———

| $10.98
| $54.95
| $51.00
| $30.00
t————— +
| $146 93
t————— +

_images/kingpin.png
build failing.

_images/tablewriter.png
“build passing

_static/ajax-loader.gif

_images/toml.png
build failing.

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

